glTF 2.0 standardisiert physikalisch basierte Materialbeschreibung von 3D-Modellen

WERBUNG
etexter
WERBUNG
Namefruits
WERBUNG
Bürobedarf Blitec
WERBUNG
thekey.ACADEMY
WERBUNG
LoopsterPanel
WERBUNG
Allensbach University
WERBUNG
Gehaltsvorschuss. Sofort!
WERBUNG
KREDIT.DE
WERBUNG
Redenservice
WERBUNG
freelancermap.de

glTF 2.0 standardisiert physikalisch basierte Materialbeschreibung von 3D-Modellen
glTF 2.0 standardisiert die physikalisch basierte Materialbeschreibung von 3D-Modellen. (Bildquelle: Fraunhofer IGD)

Experten des Fraunhofer IGD in Darmstadt entwickelten in enger Zusammenarbeit mit dem Industriekonsortium Khronos-Group einen neuen Standard zur Materialdefinition bei der Übertragung von 3D-Modellen.

Schneller, kompakter, portabel, realistischer – die gITF 2.0-Spezifikation vereinfacht von nun an auch das Physically Based Rendering (PBR) für Entwickler. Die neue gITF 2.0-Spezifikation ist ein erweiterbares, Laufzeit-neutrales offenes Standardformat zur Übertragung von 3D-Modellen. Der Standard ermöglicht es Entwicklern, 3D-Modelle bei schnellerer Ladezeit kompakt zu übertragen, und beinhaltet nun auch eine Spezifikation zur Definition von Materialien auf Basis physikalischer Eigenschaften. Entscheidenden Anteil an der Entwicklung des neuen Standards hatten die Experten des Fraunhofer-Institutes für Graphische Datenverarbeitung IGD in Darmstadt um Dr. Johannes Behr.

Vorteile der neuen Spezifikation
Die Vorgängerversion gITF 1.0 wurde um Standards zum Physically Based Rendering (PBR) erweitert. Dadurch können Entwickler Materialien portabel und durchgängig beschreiben. Die neue Spezifikation wird bereits von einer steigenden Anzahl von Grafik-APIs unterstützt. Davon profitieren auch Entwickler aus der Industrie, da sie durch die erhöhte Einheitlichkeit und API-Neutralität jetzt in der Lage sind, PBR-Material-Modelle zu verwenden. Auch die Fraunhofer-Mitarbeiter der Projekte InstantUV und instant3Dhub nutzen die Vorteile der Spezifikation bereits. Instant3Dhub ist eine zentrale Visualisation as a Service (VaaS) Lösung und stand die letzten Jahre bei den BOF-Präsentationen im Fokus. Dieses Jahr werden die Vorteile von instantUV aufgezeigt: “Mithilfe der ausdrucksstarken, portierbaren und PBR-einsatzfähigen Materialien, welche gITF 2.0 ermöglicht, können wir nun optimierte Modelle einfach von unserer InstantUV-Software für alle möglichen Renderer exportieren”, erklärt Max Limper, Leiter des InstantUV-Projekts am Fraunhofer IGD. Limper stellt den glTF 2.0 Export in InstantUV auf dem Khronos gITF-BOF der SIGGRAPH 2017 in Los Angeles vor.

Unterstützung von Entwicklern
Viele Entwickler von Graphik-Engines verwenden inzwischen gITF 2.0, um die Übertragbarkeit und visuelle Qualität zu erhöhen. Khronos, die gITF-Arbeitsgruppe und die Entwicklergemeinschaft entwickeln dazu ein Angebot an Werkzeugen und Beispielcodes, einschließlich vieler gITF 2.0-Modell- und Rendering-Beispiele. Speziell für neue Entwickler erleichtert dies den Einstieg und die Handhabung der neuen Spezifikation.

Weiterführende Informationen:

Fraunhofer-Projekte:
InstantUV: www.instantuv.org
Instant3DHUb: www.instant3dhub.org

Khronos-Group: Die Khronos-Group ist ein offenes Industriekonsortium von führenden Hardware- und Software-Unternehmen, welches offene Standards entwickelt, die die Erstellung und Beschleunigung von paralleler Datenverarbeitung, Grafiken sowie Visions- und neuronalen Netzen auf verschiedenen Plattformen und Geräten ermöglicht. www.khronos.org

SIGGRAPH 2017:
30. Juli bis 3. August, Los Angeles, CA
Los Angeles Convention Center
http://s2017.siggraph.org

Khronos BOF glTF
2. August 2017, 11:00 – 12:00 Uhr, JW Marriott LA Live, Platinum, Ballroom F-J
Vortrag “glTF 2.0 Export in InstantUV”, Max Limper
www.khronos.org/news/events/2017-siggraph

Das vor 30 Jahren gegründete Fraunhofer IGD ist heute die international führende Einrichtung für angewandte Forschung im Visual Computing. Visual Computing ist bild- und modellbasierte Informatik. Vereinfacht gesagt, beschreibt es die Fähigkeit, Informationen in Bilder zu verwandeln (Computergraphik) und aus Bildern Informationen zu gewinnen (Computer Vision). Die Anwendungsmöglichkeiten hieraus sind vielfältig und werden unter anderem bei der Mensch-Maschine-Interaktion, der interaktiven Simulation und der Modellbildung eingesetzt.

Unsere Forscher an den Standorten in Darmstadt, Rostock, Graz und Singapur entwickeln neue technische Lösungen und Prototypen bis hin zur Produktreife. In Zusammenarbeit mit unseren Partnern entstehen dabei Anwendungslösungen, die direkt auf die Wünsche des Kunden zugeschnitten sind.

Unsere Ansätze erleichtern die Arbeit mit Computern und werden effizient in der Industrie, im Alltagsleben und im Gesundheitswesen eingesetzt. Schwerpunkte unserer Forschung sind die Unterstützung des Menschen in der Industrie 4.0, die Entwicklung von Schlüsseltechnologien für die “Smart City” und die Nutzung von digitalen Lösungen im Bereich der “personalisierten Medizin”.

Durch angewandte Forschung unterstützen wir die strategische Entwicklung von Industrie und Wirtschaft. Insbesondere kleine und mittelständische Unternehmen sowie Dienstleistungszentren können davon profitieren und mit Hilfe unserer Spitzentechnologien am Markt erfolgreich sein.

Kontakt
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Daniela Welling
Fraunhoferstraße 5
64283 Darmstadt
+49 6151 155-146
presse@igd.fraunhofer.de
http://www.igd.fraunhofer.de

pe-gateway
Author: pr-gateway

WERBUNG
WERBUNG
WERBUNG
WERBUNG
WERBUNG
WERBUNG
LoopsterPanel
WERBUNG
WERBUNG
WERBUNG
WERBUNG
My Agile Privacy
Diese Website verwendet technische und Profiling-Cookies. Durch Klicken auf "Akzeptieren" autorisieren Sie alle Profiling-Cookies . Durch Klicken auf "Ablehnen" oder das "X" werden alle Profiling-Cookies abgelehnt. Durch Klicken auf "Anpassen" können Sie auswählen, welche Profiling-Cookies aktiviert werden sollen
Warnung: Einige Funktionen dieser Seite können aufgrund Ihrer Datenschutzeinstellungen blockiert werden: