Predictive Analytics für Versicherer: Drei Phasen auf dem Weg zur Effizienz

WERBUNG
Gehaltsvorschuss. Sofort!
WERBUNG
freelancermap.de
WERBUNG
Become An Actor - eBook
WERBUNG
KREDIT.DE
WERBUNG
Allensbach University
WERBUNG
Redenservice
WERBUNG
thekey.ACADEMY
WERBUNG
Smartbroker
WERBUNG
etexter
WERBUNG
Bürobedarf Blitec

Rene Schoenauer, Director Product Marketing EMEA bei Guidewire Software, beschreibt Best Practices für die Implementierung prädiktiver Analytik im Versicherungswesen

Versicherer von heute müssen schnell die richtigen Entscheidungen treffen. Die nötigen Daten für fundierte Entscheidungen sind im Überfluss vorhanden. Mit Predictive Analytics lassen sich aus diesen historischen Daten Vorhersagemodelle erstellen. Dies eröffnet neue Möglichkeiten, wirtschaftlichen Mehrwert zu erzielen – bei der Preisgestaltung genauso wie in der Schadenbearbeitung und im Underwriting. Die aktuelle Digital-Claims-Studie von zeb und Eucon zeigt auf, dass nur 40 Prozent der Versicherer Daten bisher systematisch nutzen, um ihr Schadenmanagement zu optimieren. Versicherer durchlaufen auf dem Weg zu einem erfolgreichen Einsatz von Predictive Analytics typischerweise drei Phasen: Wie sehen die Herausforderungen in jeder Phase aus und was sind die Empfehlungen für einen agilen Ansatz?

Bevor Versicherer das Thema Predictive Analytics angehen, um intelligente datengestützte Entscheidungen in allen Kernprozessen treffen zu können, sollten sie sich das relevante Fachwissen aneignen, eventuell einen externen Partner an Bord holen und einen Plan mit einer klaren Zielsetzung aufstellen.

Phase 1: Mit einem spezifischen Vorhersagemodell starten

In der Startphase fokussieren sich die meisten Versicherer darauf, zunächst ein Vorhersagemodell für einen bestimmten Geschäftsprozess zu entwickeln. Meist betrifft der erste Anwendungsfall die zukünftige Preisgestaltung, da hier mit überschaubarem Aufwand positive Effekte zu erreichen sind. Die Versicherer beauftragen in der Regel entweder externe Berater mit der Erstellung dieser Prognosemodelle oder stellen Mitarbeiter mit den erforderlichen Fähigkeiten ein. Die Spezifikationen für das Vorhersagemodell dienen der IT-Abteilung als Grundlage zur Programmierung des Modells.

Phase 2: Erweiterung auf andere Prozesse

Das Startprojekt macht Versicherern schnell deutlich, dass sie mit Vorhersagemodellen viele Versicherungsprozesse optimieren können. Deshalb wenden sie im nächsten Schritt Predictive Analytics auf andere Prozesse an, wie z.B. auf die Schadenbearbeitung oder auf Audits.
Die meisten Versicherer mit etablierten Analyse-Teams befinden sich bereits in Phase Zwei, in der sie einigen Herausforderungen begegnen können:

– Steigende Investitionen in Experten für prädiktive Modellierung, von deren spezifischem Fachwissen der Projekterfolg abhängt
– Hürden durch Altsysteme: Lösungen zum Extrahieren und Transformieren von Daten, die in Altsystemen für bestimmte Vorhersagemodelle funktionieren, lassen sich möglicherweise nicht so skalieren, dass ein effizientes Framework für weitere Modelle entstehen kann; dies steigert wiederum die Kosten
– Operationalisierte Modelle erfordern kontinuierliche Pflege, um effizient zu bleiben
– Neue Anwendungsfälle benötigen neue analytische Methoden, wodurch Experten ihre Kompetenzen erweitern müssen
– Die Implementierung der prädiktiven Modelle steht im Fokus: Die Komplexität der Modelle nimmt zu, was die IT-Abteilung mit der Programmierung überfordern kann. Neue Vorgehensweisen sind gefragt.

Durch die automatisierte Erstellung der Struktur von Vorhersagemodellen sowie den Zugriff über APIs kann man diesen Herausforderungen begegnen. Dadurch verringert sich die technische Komplexität, die mit der Vielzahl der genutzten Methoden einhergeht. Herausfordernd bleibt jedoch das Modellrisiko-Management. Wie viele Modelle und welche Versionen kommen in welchen Geschäftsprozessen zum Einsatz? Dies muss kontinuierlich überwacht und validiert werden, um Modellrisiken zu minimieren.

Phase 3: Ein agiler und effizienter Analytics-Ansatz

In der dritten Phase steht eine umfassende Betrachtung von Predictive Analytics und den damit verbundenen Aufgaben im Mittelpunkt. Es erfolgt ein Rückgriff auf die Grundlagen:

– Nicht alle Predictive-Analytics-Aufgaben sind neu. Für jedes Problem sollten die effizientesten Ressourcen verwendet werden.
– Die Operationalisierung prädiktiver Modelle kann ein standardisierter Prozess sein, der Softwarelösungen statt individuellem Fachwissen nutzt.
– Um Modellrisiken im Blick zu behalten, sollten Versicherer alle Produktionsmodelle katalogisieren – von den verwendeten Daten über die Modellierungsentscheidungen bis hin zu den Implementierungsverfahren.

Plattform als Erfolgsfaktor

Mit Predictive-Analytics-Plattformen lässt sich der Prozess der Erstellung, Implementierung und Wartung von Vorhersagemodellen standardisieren. Dies bringt große Vorteile mit sich. Durch den höheren Grad an Standardisierung brauchen Versicherer für viele Geschäftsprozesse keine Experten zur prädiktiven Modellierung mehr. Spezifisches Fachwissen ist hauptsächlich für die Entwicklung neuer Lösungen gefragt. Die Plattform bietet zudem den Experten die Möglichkeit, sich über einzelne Geschäftsprozesse hinweg auszutauschen. Dadurch erhöht sich die Effizienz von Predictive-Analytics-Initiativen. Der Wissensaustausch verringert gleichzeitig das Risiko der Abhängigkeit von einzelnen Experten.

Predictive Analytics bieten also ein enormes Potenzial für die Transformation der Versicherer. Plattformmodelle sind dabei als Grundlage für einheitliche Standards und Prozesse der Schlüssel, dass Versicherer effizienter werden und wettbewerbsfähig bleiben.

Über Guidewire

Guidewire ist die Plattform auf die Schaden- und Unfallversicherer setzen, um mit allen Beteiligten im Versicherungslebenszyklus zu interagieren, Innovation zu fördern und profitabel zu wachsen.Wir kombinieren digitale Lösungen, Kernsysteme, Analytics und KI, um unsere Plattform als Cloud-Service anzubieten. Mehr als 400 Versicherer – von Start-ups bis hin zu den größten und komplexesten Versicherungsunternehmen der Welt – nutzen die Software-Lösungen von Guidewire.

Als Partner unserer Kunden entwickeln wir uns stetig weiter, um ihren Erfolg zu unterstützen. Wir freuen uns über unsere einzigartige Erfolgsbilanz von Implementierungen, mit über 1.000 erfolgreichen Projekten – unterstützt durch das größte Forschungs- und Entwicklungs-Team und Partner-Ökosystem der Branche. Unser Marketplace bietet hunderte von Anwendungen zur Beschleunigung von Integration, Lokalisierung und Innovation.

Weitere Informationen finden Sie unter www.guidewire.de Folgen Sie uns auch auf Twitter: @Guidewire_PandC.

###

ANMERKUNG: Weitere Informationen zu den Marken von Guidewire finden Sie unter https://www.guidewire.com/legal-notices

Firmenkontakt
Guidewire Software GmbH
Louise Bradley
4th Floor Cloak Lane
EC4R 2RU London
+44 7474 837 860
lbradley@guidewire.com
http://www.guidewire.de

Pressekontakt
Allison+Partners
Vivian Dadamio
Theresienstraße 43
80333 München
+49 89 388 892 010
GuidewireGer@allisonpr.com
http://www.allisonpr.de

pe-gateway
Author: pr-gateway

WERBUNG
WERBUNG
LoopsterPanel
WERBUNG
WERBUNG
WERBUNG
WERBUNG
WERBUNG
WERBUNG
WERBUNG
WERBUNG
My Agile Privacy

Diese Website verwendet technische und Profilierungs-Cookies. 

Sie können die Cookies akzeptieren, ablehnen oder anpassen, indem Sie auf die gewünschten Schaltflächen klicken. 

Wenn Sie diese Mitteilung schließen, setzen Sie die Nutzung ohne Zustimmung fort. 

Warnung: Einige Funktionen dieser Seite können aufgrund Ihrer Datenschutzeinstellungen blockiert werden: